# Übergangsmetallketen-Verbindungen

XXIX \*. Cyclopropylsubstituierte  $\eta^1$ - und  $\eta^2$ -Ketenylverbindungen des Wolframs; Elektronenstruktur und Bindungsverhältnisse in Carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ cyclopropylketenyl)(trimethylphosphin)wolfram

Werner J. Sieber, Matthias Wolfgruber, N. Hoa Tran-Huy, H.R. Schmidt, H. Heiss, Peter Hofmann<sup>\*</sup> und Fritz R. Kreissl<sup>\*</sup>

Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching (B.R.D.)

(Eingegangen den 13. August 1987)

# Abstract

Synthesis and spectroscopic data of carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ -cyclopropylketenyl)(trimethylphosphine)tungsten and dicarbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^1$ -cyclopropylketenyl)(trimethylphosphine)tungsten are reported. The electronic structure of, and types of bonding in carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ -cyclopropylketenyl)(trimethylphosphine)tungsten are described.

#### Zusammenfassung

Für Carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ -cyclopropylketenyl)trimethylphosphin)wolfram und Dicarbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^1$ -cyclopropylketenyl)(trimethylphosphin)wolfram werden Synthese und spektroskopische Daten berichtet sowie am Beispiel von Carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ -cyclopropylketenyl)(trimethylphosphin)wolfram die Elektronenstruktur und Bindungsverhältnisse diskutiert.

# Einleitung

Bei massenspektroskopischen Studien bisher dargestellter  $\eta^1$ - und  $\eta^2$ -Ketenylkomplexe  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)<sub>2</sub>(PR<sub>3</sub>)M[ $\eta^1$ -C(CO)R'] [2-4] bzw.  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)(PR<sub>3</sub>)M[ $\eta^2$ -

<sup>\*</sup> XXVIII. Mitteilung siehe Ref. 1.

C(CO)R'] [2–5] mit M = Mo. W und R = Me, Et, Ph, bzw. R' = alkyl, aryl. SiR<sub>3</sub>, C<sub>5</sub>H<sub>4</sub>FeC<sub>5</sub>H<sub>5</sub> konnte unter verschiedenen Ionisierungsbedingungen (EI, FI, FD) meist kein Signal für das jeweilige Molekülion, sondern nur für die Fragmentionen  $M - CO^{++}$ ,  $M - PR_3^{++}$  bzw.  $M - CO - PR_3^{++}$  gefunden werden. Diese Ionen entsprechen den Carbinkomplexionen  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)(PR<sub>3</sub>)M=CR<sup>++</sup> und  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)<sub>2</sub>M=CR<sup>++</sup>. Ferner zeigten die  $\eta^2$ -Ketenylvertreter in den <sup>13</sup>C-NMR-Spektren für den zentralen Ketenkohlenstoff in der Regel [3,4] keine <sup>31</sup>P-<sup>13</sup>C- und im Fall der Wolframverbindungen auch keine <sup>183</sup>W-<sup>13</sup>C-Kopplungskonstante. Mit der Einführung des sowohl Donor- als auch Akzeptoreigenschaften aufweisenden Cyclopropylsubstituenten [6] erhofften wir uns zumindest die Stabilisierung der entsprechenden Molekülionen unter MS-Bedingungen.

# **Präparative Ergebnisse**

Dicarbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^1$ -cyclopropylcarbin)wolfram (1) setzt sich bei -15°C mit der äquivalenten Menge an Trimethylphosphin nahezu quantitativ zu Carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ -cyclopropylketenyl)trimethylphosphin)wolfram (2)  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)(PR<sub>3</sub>)W[ $\eta^2$ -C(CO)C<sub>3</sub>H<sub>5</sub>] um, welches dann selbst unter einem Kohlenmonoxiddruck von 60 bar bei tiefen Temperaturen ein Molekül CO addiert. Hierbei geht der  $\eta^2$ -Ketenylkomplex unter Öffnung des ungesättigten Metall-Kohlenstoff-Dreirings in die  $\eta^1$ -Ketenylverbindung  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)<sub>2</sub>(PR<sub>3</sub>)W[ $\eta^1$ -C(CO)C<sub>3</sub>H<sub>5</sub>] (3) über. Bei einem CO-Druck von 60 bar und einer Reaktionstemperatur von 30°C erfolgt schliesslich eine reduktive Ketenyl-Alkinyl-Umwandlung unter Ausbildung von Dicarbonyl( $\eta^5$ -cyclopentadienyl)(cyclopropylethinyl)trimethylphosphinwolfram [7].

Der  $\eta^2$ -Ketenylvertreter (2) fällt in Form oranger, diamagnetischer Kristalle an. welche sich gut in Dichlormethan und Aceton, nicht aber in Ether und Pentan lösen.



Ähnliche Eigenschaften zeigt die gelbe  $\eta^1$ -Ketenylverbindung (3), welche jedoch bei Raumtemperatur in Lösung unter Abspaltung von Kohlenmonoxid wieder in den Ausgangskomplex  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)(PR<sub>3</sub>)W[ $\eta^2$ -C(CO)C<sub>3</sub>H<sub>5</sub>] übergeht.

# Spektroskopische Untersuchungen

# IR-Spektren

Die Lösungsspektren (CH<sub>2</sub>Cl<sub>2</sub>, cm<sup>-1</sup>) der  $\eta^2$ - und  $\eta^1$ -Ketenylverbindungen **2** (Keten-CO 1700m; W-CO 1892s) und **3** (Keten-CO 2040vs, W-CO 1937s, 1845vs) zeigen im  $\nu$ (CO)-Bereich zwei bzw. drei Absorptionen, deren Lagen und Intensitäten mit den bereits beschriebenen Ketenylvertretern [3,4] vergleichbar sind.

# <sup>1</sup>H-NMR-Spektren

In den Protonenresonanzspektren (chemische Verschiebungen relativ CDHCl<sub>2</sub> = 5.4 ppm, <sup>31</sup>P<sup>-1</sup>H-Kopplungskonstanten in Hz in Klammern) beider Ketenylkomplexe findet man jeweils vier Signale [2: 5.61 (d/1.3, 5H), 2.93 (m,1H) 0.95 (m,4H), 1.38 (d/10.0, 9H); 3: 5.18 (d/2.4, 5H), 1.02 (m,1H), 0.65 (m,4H), 1.67 (d/9.4 Hz, 9H)] mit den relativen Intensitäten 5/1/4/9, welche zwanglos den Cyclopentadienyl-, C(1)-Cyclopropyl-, C(2/3)-Cyclopropyl- und den *P*-Methylprotonen zuzuordnen sind. Hervorzuheben ist bei 2 die starke Entschirmung des C(1)-Protons am Cyclopropylring, welche auf einem Elektronenabzug durch den ungesättigten Wolframacyclopropenonring beruht.

### <sup>13</sup>C-NMR-Spektren

Die wichtigsten Informationen über die Konstitution der neuen Ketenylverbindungen liefern die protonenrauschentkoppelten <sup>13</sup>C-NMR-Spektren. Die Zuordnung der Signale erfolgt aufgrund der chemischen Verschiebungen (relativ CD<sub>2</sub>Cl<sub>2</sub> = 54.2 ppm), der Aufspaltungen ( ${}^{31}P{}^{-13}C{}$ -Kopplungskonstanten in Hz in Klammern) und von Gated Decoupling Spektren: 2: W-CO 230.5 (d/8.5), CO<sub>Keten</sub> 202.7 (d/2.4), C<sub>Keten</sub> 209.8 (d/4.9), C<sub>5</sub>H<sub>5</sub> 92.3, PCH<sub>3</sub> 21.0 (d/35.4), C(1) 20.9, C(2/3) 10.9 (d/23.2); 3: W-CO 226.5 (d/17.1), CO<sub>Keten</sub> 159.5, C<sub>Keten</sub> 19.7 (d/9.7), C<sub>5</sub>H<sub>5</sub> 90.5, PCH<sub>3</sub> 20.4 (d/36.6), C(1) 13.2, C(2/3) 9.8. Besondere Aufmerksamkeit beanspruchen beim  $\eta^2$ -Ketenylkomplex die Signale der Ketengruppierung. Nach der Theorie der Kopplungen, welcher zufolge Spin-Spin-Wechselwirkungen vornehmlich über Fermikontaktwechselwirkungen - also o-Bindungen - vermittelt werden [8.9] sollte man für das terminale Ketenkohlenstoffatom eine grössere  ${}^{31}P-{}^{13}C-$ Kopplung erwarten. Aufgrund dieser Aussage und durch Vergleich mit früher beschriebenen Ketenylkomplexen [3,4] können die Dubletts bei 8 209.8 ppm mit  ${}^{2}J({}^{31}P{}^{-13}C)$  4.9 Hz und  $\delta$  202.7 ppm mit  ${}^{2}J({}^{31}P{}^{-13}C)$  2.4 Hz dem terminalen bzw. dem zentralen Ketenkohlenstoff zugeordnet werden. Bemerkenswert ist hierbei das Auftreten einer Spin-Spin-Wechselwirkung zwischen dem zentralen Ketenkohlenstoff und dem Phosphoratom. Das Auftreten dieser Kopplung bestätigt erstmals auch in Lösung das Vorliegen eines Metall-Kohlenstoff-Dreirings, der bereits früher am Beispiel von Carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^1$ -4-methylphenylketenyl)bis(trimethylphosphin)wolfram [5] für die kristalline Form durch eine Röntgenstrukturanalyse nachgewiesen worden ist. Aufgrund dieses NMRspektroskopischen Befundes ist bei einer erneuten Untersuchung dieses Tolylketenvl-Vetreters [2] ebenfalls eine  ${}^{2}J({}^{31}P-{}^{13}C)$ -Kopplung von 1.7 Hz gefunden worden.

#### Massenspektren

In den EI-Massenspektren der Komplexe 2 und 3 lässt sich erstmals das Molekülion für einen  $\eta^2$ - und einen  $\eta^1$ -Ketenylkomplex nachweisen: 2:  $M^+ m/z =$ 434; 3:  $M^+$  m/z = 462. Bisher ist es unter Anwendung verschiedenster Ionisierungsmethoden (EI, FI, FD) nicht gelungen, von  $\eta^2$ - und  $\eta^1$ -Ketenvlverbindungen aussagekräftige Massenspektren zu erhalten; vielmehr deckten sich die Massenspektren mit den jeweiligen Daten der Dicarbonyl( $n^5$ -cyclopentadienyl)-[4.10] und Carbonyl( $\eta^5$ -cyclopentadienyl)(trimethylphosphin)carbinkomplexe [11]. welche sich bei der thermischen Zersetzung der  $\eta^2$ -Ketenvlverbindungen bilden. Bei den Verbindung 2 führt vom Molekülion (m/z = 434) ausgehend der Verlust einer Carbonylgruppe zum Fragmention  $\eta^5$ -C<sub>3</sub>H<sub>5</sub>(CO)(PMe<sub>3</sub>)W=CC<sub>3</sub>H<sub>5</sub><sup>++</sup> (m/z = 406), welches den Basispeak im Spektrum bildet. Die weitere Fragmentierung läuft dann entweder über die Abspaltung von Trimethylphosphin oder über die mit einer Umlagerung verbundene Eliminierung eines  $PC_{2}H_{4}$ -Teilchens und die nachfolgende Freisetzung eines Methylradikals. Das auf diesen beiden Wegen gebildete  $n^5$ -Cyclopentadienylcyclopropylcarbin-Ion verliert anschliessend Ethylen. Der Folgezerfall beginnt mit der sukzessiven Abspaltung zweier Ethinmoleküle.

Wie bei der Verbindung 2 findet man nun auch beim  $\eta^1$ -Ketenylkomplex  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)<sub>2</sub>(PMe<sub>3</sub>)W[ $\eta^1$ -C(CO)C<sub>3</sub>H<sub>5</sub>] erstmals das Signal für das Molekülion (m/z = 462). Der anschliessende Verlust einer Carbonylgruppe führt zum Fragmention (m/z = 434), welches sowohl als  $\eta^2$ -Ketenyl- ( $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)(PMe<sub>3</sub>)M[ $\eta^2$ -C(CO)-C<sub>3</sub>H<sub>5</sub>]<sup>++</sup>) als auch als ungesättigtes  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)(PMe<sub>3</sub>)M[ $\eta^3$ -C(CO)C<sub>3</sub>H<sub>5</sub>]<sup>++</sup>) beschrieben werden kann. Der weitere Abbau wird durch die parallele Abspaltung von Trimethylphosphin oder Kohlenmonoxid eingeleitet. Die resultierenden Fragmente entsprechen dann  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)<sub>2</sub>W=CC<sub>3</sub>H<sub>5</sub><sup>++</sup> (m/z = 358) bzw.  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(CO)(PMe<sub>3</sub>)W=CC<sub>3</sub>H<sub>5</sub><sup>++</sup> oder  $\eta^5$ -C<sub>5</sub>H<sub>5</sub>(PR<sub>3</sub>)W[ $\eta^1$ -C(CO)C<sub>3</sub>H<sub>5</sub><sup>++</sup> (m/z = 406).

#### Bindungsverhältnisse und Elektronenstruktur

Die Bindungsverhältnisse und Elektronenstruktur in  $\eta^2$ -Ketenylkomplexen des hier vorliegenden Typs, in denen ein Ketenylligand RC<sub>2</sub>O<sup>-</sup> (4) formal Bindungspartner eines  $d^4$ -CpW(CO)(PR<sub>3</sub>)<sup>+</sup> Metallfragmentes 5 ist. lassen sich einfach aus der Kenntnis der Valenzorbitale beider Bausteine ableiten.



Gewinkelte Ketenyleinheiten 4 entsprechen in ihrer Elektronenstruktur den potentiell als 4-Elektronendonoren wirksamen Alkinliganden [12], wie sie in grosser Zahl bei  $d^4$ -Übergangsmetallkomplexen gefunden werden [13]. Dies zeigen bereits die beiden mesomeren Schreibweisen 4a und 4b; die offensichtliche Analogie zwischen komplexgebundenen Acetylenen und  $\eta^2$ -Ketenylgruppen wurde bereits ausführlich beschrieben [14].

Die Valenzorbitale von 4 sind aus denen eines Ketens oder eines Hydroxyacetylens leicht im Rahmen einfacher PMO-Überlegungen (Deprotonierung, Winkelung) erhältlich.



Entsprechend ansteigender Orbitalenergie sind sie in 6-9 qualitativ dargestellt. Die beiden MOs 6 und 7, beide besetzt, entsprechen im C-C-Bereich den beiden besetzten  $\pi$ -MOs von Alkinen, analoges gilt für die leeren MOs 8 und 9 und die beiden unbesetzten  $\pi^*$ -Orbitale von C-C-Dreifachbindungen. Winkelung und Anbindung des Sauerstoffs führen für 7 und 8, die beiden "in-plane"-Orbitale, zu Rehybridisierung und zur Inequivalenz der MO-Koeffizienten an C(1) und C(2) des Ketenylliganden [14], die Entartung im ursprünglichen  $\pi$ - und  $\pi^*$ -Orbitalsatz ist aufgehoben. Relativ zu einem potentiell koordinierenden Metallzentrum (M in 6-9) sind die Symmetrieeigenschaften von 6-9 vom  $\pi$ -,  $\sigma$ -,  $\pi$ - und  $\delta$ -Typ.

Die Grenzorbitale eines Metallfragments  $CpW(CO)(PR_3)^+$  (eines  $d^4-ML_5$  [15]) sind ebenfalls eingehend in der Literatur beschrieben worden [16]. Die Asymmetrie des Ligandensatzes am CpW-Halbsandwich führt zur Rehybridisierung der vier relevanten Fragment-MOs des Valenzbereiches (verglichen z.B. mit  $C_s$ -symmetrischen Fragmenten CpML<sub>2</sub> [17]), die nach ansteigender Energie in 10–13 qualitativ repräsentiert sind [18\*].



MO 10 (diese Wellenfunktion trägt den Hauptteil der "Rückbindung" zum CO-Liganden) und MO 11 sind besetzte Orbitale, 12 und 13 sind Akzeptorfunktionen gegenüber geeigneten Ligandenorbitalen. Das Symmetrieverhalten der MOs 10 und 12 gegenüber potentiellen Bindungspartnern ist vom  $\pi$ -Typ (10 und 12 sind jeweils Mischungen aus xz- und xy-AO am Metallzentrum), 11 weist  $\delta$ -Symmetrie auf, 13 fungiert als  $\sigma$ -Akzeptorniveau. Analog zu den Verhältnissen bei Alkinkomplexen CpW(CO)(PR<sub>3</sub>)(RC=CR)<sup>+</sup> [16,17] oder W(CO)(dppe)(detc)( $\eta^2$ -RC=CO) [19] sollten für  $\eta^2$ -gebundene Ketenyl-Liganden am Fragment CpW(CO)(PR<sub>3</sub>)<sup>+</sup> rotamere Vorzugseinstellungen und Rotationsbarrieren der  $\eta^2$ -C-C-gebundenen Ketenyleinheit auftreten. Modellrechnungen [20\*] für CpW(CO)(PR<sub>3</sub>)( $\eta^2$ -HC<sub>2</sub>O) als Grundkörper ergeben eine Bevorzugung der stabilsten Konformation 14a um 16

<sup>\*</sup> Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

kcal/Mol gegenüber der nichtstabilen "waagrechten" Struktur 14b. 14c ist um 8 kcal/Mol instabiler als 14a.



Beide Formen 14a und 14c sind die Minima im Energieprofil der Rotation der  $\eta^2$ -Ketenyleinheit. Sie unterscheiden sich in ihrer Energie wegen der ungünstigeren sterischen Verhältnisse (Sauerstoff/Cp-Abstossung) in 14c: in beiden Rotameren ist



Fig. 1. Wechselwirkungsdiagramm zwischen  $CpW(CO)(PH_3)^+$  und dem Cyclopropylketenyl-Liganden für die berechnete Minimumsgeometrie 16.



(16)

die Ketenyl-Ebene parallel zur W-CO-Bindung ausgerichtet, wie dies den Erwartungen entspricht [16]. Die Höhe der Ligand-Rotationsbarriere beträgt nach den Rechnungen 34 kcal/Mol, wobei dieser Wert sicherlich infolge der nicht voll berücksichtigten geometrischen Relaxation während der gerechneten Ligandrotation zu hoch liegt. Für den Cyclopropylketenyl-Liganden im hier beschriebenen Komplex Carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ -cyclopropylketenyl)(trimethylphosphin)wolfram, für den 15 (PH<sub>3</sub> statt PMe<sub>3</sub>) als Modell in MO-Berechnungen dient, kommt zur rotameren Orientierung des  $\eta^2$ -Ketenylsystems noch die Einstellungsmöglichkeit des Cyclopropylrings hinzu; eine Optimierung beider Winkel in 15 führt zu der in 16 dargestellten Minimumskonformation.

Sie entspricht 14a und einer Orientierung des Cyclopropylrings, die optimale Wechselwirkung der Walsh-MOs [21] mit den Ketenyl-MOs 6 und 9 ermöglicht und die sterische Abstossung zum Cp-Liganden minimal hält. Figur 1 gibt ein Wechselwirkungsdiagramm zwischen CpW(CO)(PH<sub>3</sub>)<sup>+</sup>-Fragment und dem Cyclopropylketenyl-Liganden [22<sup>\*</sup>] für die berechnete Minimumsgeometrie 16 wieder.

Links sind die Valenz-MOs des CpW(CO)(PH<sub>3</sub>)<sup>+</sup>, gekennzeichnet in ihrer Symmetrie gegenüber dem wechselwirkenden Ketenylfragment als  $\pi_1$ ,  $\delta$ ,  $\pi_2$  und  $\sigma$  (entsprechend **10–13**), den relevanten MOs des Cyclopropylketenyls rechts gegenübergestellt, die relativ zum Metallfragment **5** bei Orientierung wie in **16** ebenso als  $\pi_1$ ,  $\sigma$ ,  $\pi_2$  und  $\delta$  charakterisierbar sind, wobei  $\pi_1$  (voll) und  $\pi_2$  (leer) in zueinander senkrechten Ebenen  $\pi$ -Symmetrie aufweisen. Bei der gegebenen Geometrie des Cyclopropylketenyl-Liganden ist das antisymmetrische Walsh-Orbital des Dreirings ideal zur Wechselwirkung mit den in **6** und **9** skizzierten  $\pi$ -MOs des

Ketenylsystems orientiert. Aus diesem Grund ist  $\pi_1$  in Fig. 1 gegenüber MO 6 des unsubstituierten Ketenylanions durch antibindendes Einmischen des Dreiringorbitals energetisch destabilisiert und - wie in Fig. 1 gezeigt - auch über den Cyclopropylring delokalisiert. Für die aus den Modellrechnungen resultierende Molekülstruktur 16 des Cyclopropylketenyl-Modellkomplexes 15 und analog für 14a ergeben sich aus Fig. 1 als entscheidende Wechselwirkungen zwischen Metallfragment  $CpW(CO)(PH_3)^-$  und Organylligand diejenigen zwischen den beiden besetzten MOs  $\pi_1$  und  $\sigma$  des Ketenylsystems und den beiden leeren Akzeptororbitalen  $\pi_2$ und  $\sigma$  des CpW(CO)(PH<sub>3</sub>)<sup>+</sup>. MO  $\pi_1$  des Metallfragments wird durch "Rückbindung" zu  $\pi_2$  des organischen Liganden geringfügig stabilisiert, die Fragmentorbitale auf beiden Seiten mit  $\delta$ -Symmetrie treten kaum in Wechselwirkung [23\*]. Sowohl im MO  $\pi_1$  als auch im MO  $\sigma$  des Ketenylsystems (vgl. Fig. 1) besitzt die MO-Wellenfunktion an C(3) den wesentlich grösseren Koeffizienten. Sowohl  $\sigma$ - als auch  $\pi$ -dative Bindung vom Ketenylliganden zum Metallfragment sind daher wesentlich stärker in der W-C<sub>B</sub> als in der W-C<sub>a</sub>-Bindung lokalisiert, was sowohl im höheren prozentualen Anteil der AOs von  $C_{\beta}$  an den beiden MOs A und B, wie auch in den Überlappungspopulationen W- $C_{\beta}(0.475)$  und W- $C_{\alpha}(0.300)$  von 15 zum Ausdruck kommt. Die Rückbindung vom Metall ( $\pi_1$ ) ins Akzeptor-MO  $\pi_2$ , das am  $C_{\alpha}$  den grösseren Anteil seiner Wellenfunktion aufweist, vermag mit dem resultierenden MO C die höhere Bindungsstärke W- $C_B$  nicht auszugleichen, so dass insgesamt eine Grenzschreibweise 17a den Modellrechnungen am ehesten entspricht (Metallacyclopropenon-Grenzstruktur).



Die in Röntgenstrukturanalysen bisher gefundenen Bindungslängenunterschiede zwischen W-C<sub> $\alpha$ </sub> und W-C<sub> $\beta$ </sub> bestätigen die stärkere Anbindung von C<sub> $\beta$ </sub> ans Metall [5]. Die experimentell beobachteten Kopplungskonstanten  ${}^{2}J({}^{34}P-{}^{13}C)$ , die für C<sub>8</sub> in allen bisher untersuchten  $\eta^2$ -Ketenvlkomplexen des CpW(CO)(PR<sub>3</sub>)-Metallfragments deutlich sichtbar sind und wesentlich kleineren Werten für C<sub>a</sub> gegenüberstehen, entsprechen ebenfalls der erheblich höheren Bindungsstärke W-C<sub>8</sub> mit ihren stärkeren o-Anteilen in der W-C-Bindung. Vergleicht man in Modellrechnungen die Cyclopropylverbindung 15 (Fig. 1) mit ihrem Grundkörper 14 (H statt Cyclopropyl), so ergeben sich interessanterweise etwas kleinere Überlappungspopulationen W-C<sub>a</sub> und W-C<sub>b</sub> für das unsubstituierte Ketenvlsystem, d.h. der cyclopropylsubstituierte Ligand sollte fester am Metallfragment gebunden sein. Die beobachtete Stabilitätserhöhung der Molekülionen in den Massenspektren der Cyclopropylketenylkomplexe gegenüber Aryl- und Alkylderivaten und die Erhöhung der  $({}^{31}P - {}^{13}C_{\alpha})$ -Kopplung dürfte hier, d.h. in der cyclopropylbedingten besseren Donorfähigkeit des Ketenylliganden und im Potential des Dreirings. Elektronendefizit auszugleichen, ihre Ursache haben. Es sind die energetisch hochliegenden "gebogenen" C-C-Bindungsorbitale des Cyclopropanrings [24], die - ideal zur

Hyperkonjugation mit dem ungesättigten Metallacyclopropenonring befähigt – als  $\pi$ -Donoren fungieren. Da C<sub> $\beta$ </sub> bei Cyclopropylsubstitution ausserdem in eine  $\sigma$ -Bindung mit relativ hohem *s*-Anteil von Seiten des C(1)-Atoms des Cyclopropylrings involviert ist und so entsprechend den Walsh-Bent-Regeln [25] selbst *p*-Charakter in der Bindung zu diesem (quasi "elektronegativeren") C-Atom konzentriert, ergibt sich als Folge der Cyclopropylsubstitution auch erhöhter *s*-Charakter in den anderen von C<sub> $\beta$ </sub> ausgehenden Bindungen, also auch hin zum elektropositiven W-Atom. Die Cyclopropylgruppe stabilisiert somit sowohl als  $\pi$ -Donor als auch durch Stärkung der  $\sigma$ -Bindungen im  $\eta^2$ -Ketenyl-Metall-System.

# **Experimenteller** Teil

IR-Spektren: Aufnahmen im  $\nu$ (CO)-Bereich, Perkin–Elmer Modell 282B, LiF-Optik. <sup>1</sup>H-NMR-Spektren: JEOL PMX 60. <sup>13</sup>C-NMR-Spektren: JEOL FX 60. Massenspektren: Varian MAT 311A mit kombinierter EI/FD-Quelle und SS200.

Alle Arbeiten wurden unter Argonatmosphäre durchgeführt; sämtliche Lösungsmittel waren getrocknet (Na/K-Legierung,  $P_4O_{10}$ ) und argongesättigt.

# $Dicarbonyl(\eta^{5}-cyclopentadienyl)(cyclopropylcarbin)wolfram (1)$

5.36 g (12.5 mmol) *trans*-Bromotetracarbonyl(cyclopropylcarbin)wolfram [26] werden in 100 ml Ether gelöst und bei -40 °C unter Rühren mit 1.65 g (18.7 mmol) Natriumcyclopentadienyl versetzt. Nach 12 h filtriert man die dunkelbraune Lösung über eine mit Kieselgel beschickte Fritte und zieht anschliessend das Lösungsmittel am Hochvakuum bei -20 °C ab. Der Rückstand wird bei -40 °C über Kieselgel chromatographiert. In Dichlormethan/Pentan (1/1) läuft als erste eine dunkelgelbe Zone, welche den Komplex 1 enthält. Nach Entfernen des Lösungsmittels am Hochvakuum kristallisiert man aus Pentan um und erhält gelbe Kristalle. IR (CH<sub>2</sub>Cl<sub>2</sub>): 1993vs, 1921vs cm<sup>-1</sup>. <sup>1</sup>H-NMR (CD<sub>2</sub>Cl<sub>2</sub>): C<sub>5</sub>H<sub>5</sub> 5.58 (s,5H), C(1) 1.20 (m,1H), C(2/3) 0.83 (m,4H). <sup>13</sup>C-NMR (CD<sub>2</sub>Cl<sub>2</sub>): W≡C 327.2, W-CO 222.7, C<sub>5</sub>H<sub>5</sub> 91.6, C(1) 34.3, C(2/3) 11.7. Ausbeute 3.67 g (82% bez. auf Br(CO)<sub>4</sub>W≡CC<sub>3</sub>H<sub>5</sub>. Gef.: C, 36.37; H, 2.66. C<sub>11</sub>H<sub>10</sub>O<sub>2</sub>W (358.1) ber.: C, 36.90; H, 2.82%. Mol. Masse 358 (massenspektrometrisch bez. auf <sup>184</sup>W).

### Carbonyl( $\eta^5$ -cyclopentadienyl)( $\eta^2$ -cyclopropylketenyl)trimethylphosphinwolfram (2)

2.69 g (7.5 mmol) **1** werden in 50 ml Dichlormethan gelöst und mit 0.65 g (8.3 mmol) Trimethylphosphin versetzt. Man rührt anschliessend bei  $-15^{\circ}$ C, wobei sich die zunächst gelbe Lösung langsam dunkelrot färbt. Durch Zugabe von Ether/Pentan wird das Rohprodukt ausgefällt und mehrmals mit je 50 ml Pentan gewaschen. Nach dem Trocknen am Hockvakuum fällt **2** als oranges Kristallpulver an. Ausbeute 3.10 g (93% bez. auf C<sub>5</sub>H<sub>5</sub>(CO)<sub>2</sub>W=CC<sub>3</sub>H<sub>5</sub>). Gef.: C, 38.68; H, 4.47; O, 7.22; P, 7.36; W, 42.37. C<sub>14</sub>H<sub>19</sub>O<sub>2</sub>PW (434.1) ber.: C, 38.73; H, 4.41; O, 7.37; P, 7.14; W, 42.35%. Mol.Masse 434 (massenspektrometrisch bez. auf <sup>184</sup>W).

# Dicarbonyl( $\eta^{5}$ -cyclopentadienyl)( $\eta^{1}$ -cyclopropylketenyl)trimethylphosphinwolfram (3)

Eine Lösung von 2.17 g (5.0 mmol) **2** in 25 ml Dichlormethan wird in einen 100 ml Handautoklaven gegeben. Man presst bei  $-30^{\circ}$ C Kohlenmonoxid bis zu einem Druck von 70 bar auf. Nach 18 h entspannt man das Reaktionsgefäss und fällt aus der gelben Lösung das Rohprodukt mit Ether/Pentan aus. Nach mehrmaligem

Waschen mit je 50 ml Pentan kristallisiert man aus Dichlormethan/Ether/Pentan um und trocknet den Komplex bei  $-30^{\circ}$ C am Hochvakuum. Gelbe Kristalle. Ausbeute 2.06 g (89% bez. auf C<sub>5</sub>H<sub>5</sub>(CO)(PMe<sub>3</sub>)W( $\eta^2$ -C(CO)C<sub>3</sub>H<sub>5</sub>)). Gef.: C, 39.26; H, 4.13; O, 10.34; P, 6.90; W, 40.01. C<sub>15</sub>H<sub>19</sub>O<sub>3</sub>PW (462.1) ber.: C, 38.99; H. 4.14; O, 10.39; P, 6.70; W, 39.78%. Mol.Masse 462 (massenspektrometrisch bez. auf <sup>184</sup>W).

### Dank

Wir danken Frl. U. Graf und Herrn M. Barth für die Durchführung der Elementaranalysen, Herrn Prof. Dr. H.G. Alt, Universität Bayreuth, für die Aufnahme einiger NMR-Spektren, der Deutschen Forschungsgemeinschaft, Bonn Bad-Godesberg, und dem Fonds der Chemischen Industrie für die grosszügige Unterstützung dieser Arbeit.

#### Literatur

- 1 F.R. Kreissl, M. Wolfgruber und U. Thewalt, J. Organomet. Chem., 317 (1986) 175.
- 2 F.R. Kreissl, A. Frank, U. Schubert, T.L. Lindner und G. Huttner, Angew. Chem., 88 (1976) 649; Angew. Chem. Int. Ed. Engl., 15 (1976) 632.
- 3 F.R. Kreissl, K. Eberl und W. Uedelhoven, Chem. Ber., 110 (1977) 3782.
- 4 W. Uedelhoven, K. Eberl und F.R. Kreissl, Chem. Ber., 112 (1979) 3376.
- 5 F.R. Kreissl, P. Friedrich und G. Huttner, Angew. Chem., 89 (1977) 110: Angew. Chem. Int. Ed. Engl., 16 (1977) 102.
- 6 A.D. Walsh, Trans. Faraday Soc., 45 (1949) 179.
- 7 W. Sieber, M. Wolfgruber, D. Neugebauer, O. Orama und F.R. Kreissl, Z. Naturforsch. B. 38 (1983) 67.
- 8 J.A. Pople und D.P. Santry, Mol. Phys., 8 (1964) 1,
- 9 T.A. George und C.D. Turnipseed, Inorg. Chem., 12 (1973) 394.
- 10 E.O. Fischer, T.L. Lindner und F.R. Kreissl, J. Organomet. Chem., 112 (1976) C27.
- 11 F.R. Kreissl, W. Uedelhoven und K. Eberl, Angew. Chem., 90 (1978) 908; Angew. Chem. Int. Ed. Engl., 17 (1978) 859.
- 12 K. Tatsumi, R. Hoffmann und J.L. Templeton, Inorg. Chem., 21 (1982) 466 und dort zitierte Literatur.
- (a) B.C. Ward und J.L. Templeton, J. Am. Chem. Soc., 102 (1980) 1532; (b) R.B. King, Inorg. Chem.,
  7 (1968) 1044; (c) H.G. Alt und H.I. Hagen, Angew. Chem. Suppl., (1983) 1364; (d) F.R. Kreissl, W.
  Sieber und M. Wolfgruber, Angew. Chem. Int. Ed. Engl., 22 (1983) 493; (e) weitere Literaturangaben finden sich in Lit, 14.
- 14 D.C. Bower, K.R. Birdwhistell und J.L. Templeton, Organometallics, 5 (1986) 94.
- 15 R. Hoffmann, Angew. Chem., 94 (1982) 725; Angew. Chem. Int. Ed. Engl., 21 (1982) 711.
- 16 B.E.R. Schilling, R. Hoffmann und J.W. Faller, J. Am. Chem. Soc., 101 (1979) 592 und dort zitierte Literatur.
- 17 (a) B.E.R. Schilling, R. Hoffmann und D.L. Lichtenberger, J. Am. Chem. Soc., 101 (1979) 585; (b) P. Hofmann, Angew. Chem., 89 (1977) 551; Angew. Chem. Int. Ed. Engl., 16 (1979) 536; (c) F.R. Kreissl, W. Sieber, P. Hofmann, J. Riede und M. Wolfgruber, Organometallics, 4 (1985) 788.
- 18 Gezeigt ist nur der d-Anteil der Wellenfunktionen am Metall, die Blickrichtung ist aus der Position eines 3. Liganden heraus gewählt, der das CpW(CO)(PR<sub>3</sub>)-Fragment zum CpML<sub>3</sub>-Halbsandwich ergänzt (z.B. Ketenyl-Ligand oder Alkin etc., vgl. Lit. 16).
- 19 K.R. Birdwhistell, T.L. Tonker und J.L. Templeton, J. Am. Chem. Soc., 107 (1985) 4474.
- 20 Die Modellrechnungen sind vom Extended Hückel Typ: R. Hoffmann, J. Chem. Phys., 39 (1963) 1497. Die verwendeten Parameter entsprechen denjenigen aus Lit. 6c. vgl. auch: P. Kubacek und R. Hoffmann, J. Am. Chem. Soc., 103 (1981) 4320. Die Geometrien der Modellsysteme wurden aus den Strukturdaten von CpW(CO)(PMe<sub>3</sub>)(η<sup>2</sup>-CR<sup>1</sup>CO), (R<sup>1</sup> = p-Tolyl) adaptiert (vgl. Lit. 5). Im einzelnen wurden folgende Daten verwendet: Bindungslängen (pm): W-C(O) 190. W-Cp/Zentrum) 206. W-P

245.5, W-C (Ketenyl) 203, C-O 120, P-H 142, C(Ketenyl)-O 140, C-C(Ketenyl) 142.4, Cp (lok.  $D_{5h}$ -Symmetrie) C-C 140, C-H 109, Cyclopropyl (lok.  $D_{3h}$ -Symmetrie) C-C 154, C-H 109, C(Ketenyl)-C(Cyclopropyl) 152; Winkel Ketenyl (°): Winkel C-C-H 155, C-C-O 142; PH<sub>3</sub> (lok.  $C_{3v}$ -Symmetrie) H-P-H 109.74. W(CO)(PH<sub>3</sub>)(Ketenyl)-Fragment: idealisiert als Oktaederfragment. Zur Berechnung der Nicht-diagonal Elemente der Hückel-Matrix wurde eine modifizierte Wolfsberg-Helmholz-Gleichung verwendet: J.H. Ammeter, H.-B. Bürgi, J.C. Thibeault und R. Hoffmann, J. Amer. Chem. Soc., 100 (1978) 3686.

- 21 M. Klessinger, Elektronenstruktur organischer Moleküle, Verlag Chemie, Weinheim, 1982, S. 101 ff.
- 22 Der Übersichtlichkeit halber ist in Fig. 1 rechts der Cyclopropylketenyl-Ligand mit seiner molekularen Spiegelebene in der Zeichenebene dargestellt. Im Komplex 15 entspricht seine Lage der in 16 gezeigten Minimumsgeometrie.
- 23 Rotation des Ketenylliganden um 90° würde die stabilisierenden Wechselwirkungen von  $\pi_1$ (Ketenyl) mit  $\pi_2$ (Metallfragment) und von  $\pi_2$ (Ketenyl) mit  $\pi_1$ (Metallfragment) zu einer destabilisierenden Wechselwirkung  $\pi_1/\pi_1$  (4e, 2 Orbitale) und einer energetisch wirkungslosen Wechselwirkung  $\pi_2/\pi_2$ (2 leere MOs) machen; hieraus resultieren die Vorzugskonformationen **14a**, **14c** und **16** für  $d^4$ -Metallzentren. Vgl. hierzu auch die ausführliche Disskussion in Lit. 5.
- 24 T.A. Albright, J.K. Burdett und M.H. Whangbo, Orbital Interactions in Chemistry, Wiley, New York, 1985, S. 184 ff.
- 25 H.A. Bent, Chem. Rev., 61 (1961) 275.
- 26 E.O. Fischer, N. Hoa Tran-Huy und D. Neugebauer, J. Organomet. Chem., 229 (1982) 169.